
1

Introduction 1

Rapid software development is essential for enterprises that seek innovative
product leadership and enhanced revenue opportunities. To succeed in today’s
increasingly fast-paced global networked business environment, agile
enterprises require agile software solutions. Equally, the inertia associated with
traditional, monolithic applications must be overcome so that products can be
developed and marketed expediently, resulting in an increased market share
and profitability. Finally, understanding and meeting customers’ requirements
for individual applications and delivering the best solution for their needs will
help position a company to achieve a dominant position in its industry and
enable it to continuously adapt to changing market requirements.

Software Development for Agile Enterprises

Taking enterprise computing to a new level in productivity, SunSoft’s™

WorkShop NEO is engineered to be the vehicle for progressive software
developers building state-of-the-art, flexible, custom, networked applications.
WorkShop NEO is part of the realization of Sun’s vision of a global network of
open systems transparently interacting with each other to form an efficient
conduit for distributing corporate knowledge.

The foundation technology behind WorkShop NEO is networked objects.
Networked object technology builds on, and takes full advantage of, the client-
server model for distributed applications. Snap-together application building
blocks allow application prototypes to be developed, tested, and deployed
very quickly. In essence, networked objects provide a completely new — and



2 WorkShop NEO Development Environment — January 1996

1

extremely powerful — paradigm for network computing. ‘Programming the
Network’ using objects takes software development for enterprise computing
to new levels.

Networked Objects Better Represent Business Processes

One of the most powerful benefits of object technology is its ability to greatly
streamline information flow, as well as provide new perspectives on
information and the corporate processes which manage it. In effect, objects are
the business.

Some subtle benefits to organizational representation lie in the philosophy
behind object technology. Today’s corporate trends toward globalization and
decentralization can profit from the modularity, robustness and flexibility of
objects. Organizations changing to meet new competition, or to address new
markets will find that their information infrastructure is flexible enough to
change with them.

The Software Development Crisis

Over the last 20 years, application software development has increased in
complexity by fifteen-fold. Application backlog — the time it takes to develop
new applications — has grown to over two years. Maintenance costs for
applications have steadily increased. And application quality too frequently
fails to meet desired targets (see Figure 1). Finally, user expectations are not
being met because applications take too long to become available, and when
they do, they fail to meet the user’s current needs.

Conventional software development techniques have proven increasingly
inadequate as the complexity of applications have increased. Structured design
techniques, while providing a suitable approach for managing complexity, tend
to break down during implementation and revision, as developers are
compelled to use their own approaches for dealing with complex software
component interactions.



Introduction — January 1996 3

1

Figure 1 Trends in software development

In contrast, object technology provides a more sustainable approach to
managing project and application complexity. Objects are generally better able
to isolate the functionality of individual software components, permitting
software developers to focus on the application rather than on details of
integration.

Software development in the near future will enable programmers to build
applications using components from existing catalogs of objects, provided both
by SunSoft and third-party vendors. Developers will connect objects and
customize their application solution using object-oriented development tools to
exchange information and request services via messages passed through the
object computing environment (see Figure 2).

In this new object-based environment, the independence of objects will free
developers to focus on application issues rather than deal with system specific
details. SunSoft’s WorkShop NEO development environment delivers a rich set
of capabilities isolating the developer from the underlying operating system
and specifics of the network. In this new computing environment, applications
are no longer packages of software code statically linked together, but rather

A
p
p
lic

a
ti
o
n
 S

iz
e

1970’s 1990’s D
e
v
e
lo

p
m

e
n
t 
B

a
c
k
lo

g

1970’s 1990’s
Q

u
a
lit

y

1970’s 1990’s

Actual

Target

M
a
in

te
n
a
n
c
e
 C

o
s
ts

1970’s 1990’s



4 WorkShop NEO Development Environment — January 1996

1

are object-based applications built upon dynamic assemblies of other objects —
each continually making and breaking connections with other objects to serve
the user’s momentary needs.

Figure 2 Much like factory automation, WorkShop NEO fosters the efficient
development of networked applications

Encapsulation promotes graceful updating of functionality, as well as
reliability and maintainability. As a result, object technology can reduce
software maintenance effort through the production of better quality systems.
Where errors do appear, they would likely be highly localized, and hence be
easier to fix. Objects also encourage information hiding, leading to more clearly
defined interfaces between modules. In a well designed and implemented
object-based system, correcting errors should avoid the common domino effect
to other software modules, since there is less direct interaction and no
knowledge of other object’s internals.

Because object-based applications are inherently designed to be re-engineered,
there is freedom to make changes, promoting an atmosphere that emphasizes a
relentless commitment to quality and targets the best possible solution, rather
than settling for a mediocre one. Well-defined object interface definitions free
developers from dependence on a particular language and greatly increase the
reuse of existing objects for building new applications.

Object reuse allows new applications to be built on the solid foundations of
others, resulting in less development effort and higher quality, more robust
code. Most significantly, SunSoft’s Solaris NEO operating environment further
extend encapsulation around network interoperability, thus allowing software to
be built that is also free from dependence on location, operating system, or
vendor.

WorkShop NEO
Development
Environment

Deployable Objects

Benefits:
Flexibility
Reliability
Maintainability



Introduction — January 1996 5

1

By delivering reusable, superior application solutions, new opportunities
emerge for establishing a market that sells object software components. Objects
allow more than just software module reuse, as new subclasses created from
existing objects inherit the functionality of their ancestor, as well as
incorporating their own unique functionality.

Development Model for the Networked Enterprise

Today, many companies employ a two-tiered model for building applications,
consisting of a graphical front-end and back-end database environment. While
popular development tools such as Microsoft’s Visual Basic™ have enabled
companies to easily develop simple applications, much of the application’s
logic is tied to the user interface and the database access logic. The difficulty of
this approach lies in that as application requirements change and evolve, it
becomes increasingly difficult to modify the source code in an effective
manner. Further, changes to the user interface, now tied inexorably to the
application logic, are significantly more difficult to make. Precisely the same
problem exists on the back-end, where the data has complex ties to the
application code. Application backlog, quality, size, and maintenance costs all
continue to suffer.

In a nutshell, the conventional two-tiered model fails to keep pace with the flexibility
and scalability required in rapidly-changing MIS environments. Fast
prototyping of applications leading to timely deployment of effective solutions
requires a new approach — one which enables the application logic to be
altered to provide new features, without impacting the user interface or data
storage.

Coincident with the availability of networked object technology, SunSoft sees
the solution to the limitations of today’s two-tier approach as a three-tier
model which effectively moves the application or business logic into a middle
layer between the user interface and data storage layers (see Figure 3). This
middle level, or business tier, fosters a much more flexible and scalable
approach to building missions-critical applications. Because application logic is
more independent of the user interface, rapid prototyping is easier to perform.
At the same time, application logic once bound to the data storage can be
moved to the business tier, effectively removing the constraints on database
storage and permitting significantly greater scalability of their applications.



6 WorkShop NEO Development Environment — January 1996

1

Figure 3 Three-tier Development Model

WorkShop NEO provides tools to implement the three-tier computing model
based on networked objects. It enables the software development process itself
to be partitioned into three well-defined tiers:

• A consistent, visually rich, highly intuitive user interface for both generic as well
as custom applications provides an environment that helps leverage the
user’s time and productivity. The consistency of the interface reduces the
learning time for new applications, integrates well with others, and results
in improved quality, and look and feel. Building on proven user interface
objects helps to facilitate fast prototyping and shortened development
cycles. This ease of changing and testing the interface improves the
interaction between the end user and the developer, as revisions of an
application are fine-tuned to enable the application to perform precisely as it
was designed to.

• Generic business objects can be developed first followed by more specific
sub-classes built from these original objects and inheriting functionality
from their parents. These objects are then used as sub-class objects to build
custom applications precisely tailored to meet very specific needs.

• Data access can also be isolated in the third tier of this model. A common
interface to a variety of storage options ensures that the developer can
choose a method that fits the needs of the application. Whether using the
built-in persistence offered by Solaris NEO, or the ability to access legacy
data stored in Relational Database Management Systems (RDBMS) or Object
Oriented Database Management Systems (OODBMS), objects may be built
to handle any data requirement.

GUI

Business Tier

Corporate Data



Introduction — January 1996 7

1

Need for Powerful Tools

SunSoft’s mission is to provide next generation development tools for
corporations that are seeking to achieve strategic leadership positions within
their industries. To make this possible, software development teams must work
synergistically using tools that are engineered to work together.

SunSoft’s WorkShop NEO ia an innovative software development solution
which includes a rich set of tools for managing application development and
deployment, building interfaces, and increasing developer and team
productivity. These tools provide the basis for the development and
deployment of powerful, mission-critical object-based applications.

Importance of Standards

Once satisfied with just application portability that allowed common source
code to be compiled and linked for multiple architectures, today’s truly
heterogeneous enterprise network now requires complete interoperability of
objects and applications across multiple platforms, operating systems,
languages, and legacy data.

SunSoft’s dedication to open industry standards makes this interoperabilty
achievable today, and will benefit the organizations that utilize WorkShop
NEO to build applications that will last long into the future. Object
Management Group (OMG) standards for object interface definitions and
Object Request Broker (ORB-to-ORB) interoperability between vendor
implementations make this vision a reality.

Use of OMG’s Interface Definition Language (IDL) makes applications
programming language-independent. Through the ORB’s ability to enable a
client to access an object knowing only an object reference, location
independence is achieved. Further, tools to integrate legacy databases and code
provide a means to protect investments in information infrastructures, while
freeing the enterprise to make buying decisions without restricting itself to
current vendors.

A Comprehensive, Scalable Environment

The scalable performance offered by Sun’s advanced multiprocessing and
multithreading technology and the built-in, industrial strength, transparent
networking capabilities of Solaris supply the foundation for integrating a



8 WorkShop NEO Development Environment — January 1996

1

heterogeneous mixture of workstations, PCs, NetWare clients, and
mainframes into a dynamic, flexible, and efficient networked object
environment. The networking infrastructure encompasses not only UNIX™, but
also includes OLE™ compliant MS-Windows™ applications as well as seamless
access to both relational and object oriented databases.



9

NEO Product Family Overview 2

A Comprehensive Solution

The built-in networking of Solaris is the foundation of SunSoft’s object
environment, and provides a transparent, high performance, distributed
computing infrastructure. Industry-leading multiprocessing and
multithreading technology ensures that Solaris NEO can scale to meet growing
demands of enterprise-wide networked applications, while bundled Solstice
NEO management tools allow total control of the object network from any
location.

Advanced productivity tools available in WorkShop NEO enable team software
development with an object-oriented interface builder that speeds and
simplifies the building of prototypes. Promotion of, and conformance to,
industry standards further ensures connectivity with mainframes as well as
with MS-Windows based desktops. Further, database connectivity and built-in
persistence and encapsulation methods provide easy access to legacy data.

Figure 4 illustrates the five key dimensions of the NEO Product Family.
Together, Solaris NEO, Solstice NEO, WorkShop NEO, and complementary
MS-Windows and database connectivity technology, provide a comprehensive
solution for enterprise application systems.



10 WorkShop NEO Development Environment — January 1996

2

Figure 4 Solaris NEO Product Family

As illustrated in Figure 5, Solaris NEO delivers the means to implement and
deploy a comprehensive set of services for the networked enterprise. With
Solaris NEO, a three-tier computing architecture can be efficiently
implemented that provides scalable and flexible networked applications.

MS-Windows
Connectivity

Operating

Environment

Development
Tools

Database

Connectivity
Administration

Tools

The

NEO

Product

Family



NEO Product Family Overview — January 1996 11

2

Figure 5 Solaris NEO components supports efficient three-tier computing

Standards for Interoperability

With a membership of over 500 software vendors, developers, and end users,
the Object Management Group (OMG™) continues to develop the standards
that will ensure a common architecture for heterogeneous, distributed, object-
oriented applications. SunSoft was a founding member of the OMG, and has
contributed many key specifications designed to ensure portability and
interoperability between object system products from multiple vendors.

A major benefit of truly heterogeneous networked objects is the ability to
integrate disparate platforms, allowing information resources to be shared
across the network, independent of specific operating systems, languages, or
implementation techniques. The cornerstone of this effort is the method by
which interfaces to objects are defined, allowing behavior to be characterized
without specifying the method used to implement it. Evidence of its
commitment to both standards and object technology, SunSoft contributed the
Interface Definition Language (IDL) to the OMG.

OpenStep

CORBA

Shared
Business

Corporate
Data

Desktop

Objects



12 WorkShop NEO Development Environment — January 1996

2

Through the availability of a standardized Inter-ORB Protocol (IOP), vendors
can supply objects that interoperate in a heterogeneous environment. OMG’s
CORBA 2.0 standard Internet IOP (IIOP) is based on TCP/IP, and SunSoft
provides a sample reference implementation free of charge, thus enabling
vendors to be certain that their systems, objects and applications are
interoperable.

Solaris NEO Operating Environment

Solaris NEO is a comprehensive operating environment that includes an
intuitive rich graphical desktop, a networked object infrastructure, an
advanced runtime environment for shared services, and administration and
management tools. Figure 6 illustrates the component structure of Solaris NEO.
The shaded boxes represent shared runtime libraries.

Figure 6 Solaris NEO components

Solaris

Desktop Services Shared Services Data Services

Networked Object Infrastructure

NEO Desktop

NEO Network

Solstice NEO

DatabaseMS-WindowsN

E

O

X11/DPS

NEO ServicesOpenStep

Networked Applications

ORB
Object Services

Connectivity Connectivity



NEO Product Family Overview — January 1996 13

2

NEO Desktop

The NEO Desktop is a user-friendly OpenStep™ based application environment
consisting of the following elements:

• Window Manager

• Desktop Applications

• Desktop Services

The ready-to-use desktop applications (accessories) build on capabilities
available to all OpenStep-based applications. These capabilities facilitate
application consistency and interoperability in areas such as fonts, color, and
on-line hypertext-based help. The common desktop services are usable by any
OpenStep application at runtime. These services, accessed programmatically
via OpenStep frameworks, include pasteboard (for cut and paste), drag and
drop, hyperlinks, spell checker, and print.

NEO Desktop provides the user with the same functionality as the
NEXTSTEP™ Application Environment. In addition, NEO Desktop enables the
continued use of the thousands of existing applications available for Solaris
today. As an integral part of SunSoft’s “universal desktop”, this includes use of
Common Desktop Environment (CDE) applications, MS-Windows applications
using Wabi™, and Apple Macintosh applications running under the
Macintosh Application Environment (MAE™). Interoperability such as drag-
and-drop and cut-and-paste is supported between applications from all of
these different environments. In addition to OpenStep applications, WABI,
MAE, and CDE-Motif applications can be launched from the NEO Desktop. In
turn, OpenStep applications can be launched from the CDE desktop.

NEO Desktop delivers a rich visual environment based on X11 with Display
PostScript™ extensions and provides an intuitive, easy to use, high quality,
multimedia user environment. Informative active icons, advanced drag and
drop support, embedded multimedia capabilities, and integrated help facilities
enhance the user experience and productivity. Interface consistency aids users
in adapting to employing new applications quickly, and productivity is
improved because the same functionality is available for all desktop
applications. As an example, the NEO Desktop spell checker may be invoked
from the text edit and electronic mail desktop applications, or any other
custom application.



14 WorkShop NEO Development Environment — January 1996

2

OpenStep

The OpenStep component of NEO consists of OpenStep-compliant
development frameworks and associated shared runtime libraries. The
OpenStep frameworks, supplied as Objective C class libraries, comprise the
following:

• Graphical User Interface (GUI) Framework

• Application Framework

• Foundation Framework

• Enabling Framework

OpenStep frameworks provide powerful reusable application building blocks
that can be used by developers in conjunction with the WorkShop NEO
Graphical Application Builder.

NEO Network

NEO Network is an OMG CORBA-compliant networked object infrastructure.
It essentially provides an “operating system” for networked objects that is
particularly suitable for pre-emptive multitasking, multithreading
environments. NEO Network includes an Object Request Broker (ORB) and set
of object services.

NEO Network’s advanced technology is scalable, high performance, and
designed to form a solid platform for shared service computing. Networked
administration and management facilities are built-in. In addition, NEO
Network is architected to enable future system evolution.

NEO Services

NEO Services are key to enabling the shared service computing model. NEO
Services are a comprehensive development framework and associated shared
runtime libraries for networked objects and shared services. The NEO Services
Development Framework is employed by the WorkShop NEO Networked
Object Constructor.



NEO Product Family Overview — January 1996 15

2

NEO Services automate and make transparent functions that an application
developer would normally need to write for areas including shared services,
server availability, persistent object availability, concurrent requests, server
management, and application installation. It enables full, simplified use of the
NEO networked object infrastructure.

Completely unique to Solaris NEO, NEO Services are fully compatible with
CORBA specifications, and provide the extended services required to facilitate
rapid development of networked applications.

Solstice NEO

Management tools are key to the success of distributed computing
environments. By providing network management from any location,
enterprise management tools improve administrative capabilities and
responsiveness while reducing costs.

Solstice NEO, bundled with Solaris NEO, complements this strategy and adds
capabilities for the administration and management of networked applications
and shared services to the Solstice product family. With Solstice NEO,
resources can be monitored and controlled from any point on the network.
System, workgroup, shared service, and application management capabilities
are supported in the areas of:

• System Installation and Management
• Application Installation and Administration
• Workgroup and Shared Service Administration

A full set of tools provide for one-step system and application installation
including incremental upgrades and extensive on-line help.

WorkShop NEO Development Environment

A rich environment for the development of applications is a major component
of the NEO product family. SunSoft’s award winning WorkShop has been
extended to include tools unique to NEO. WorkShop NEO is an integrated
development environment that includes tools for building networked objects
and shared services and tools for building custom applications including GUI
front-ends.

Figure 7 illustrates the component structure of WorkShop NEO.



16 WorkShop NEO Development Environment — January 1996

2

NEOworks™

The NEOworks component of WorkShop NEO consists of:

• CORBA networked object development tools and the NEO Services
Development Framework

• OpenStep graphical application development tools and the OpenStep-
compliant GUI, Application, Foundation, and Enabling Frameworks

Figure 7 WorkShop NEO components

Tools for Constructing Networked Objects

Included in NEOworks are the Networked Object Constructor, IDL compiler,
Networked Object Debugger, and NEO Services Development Framework.
Coupled with the OpenStep graphical application development tools and
frameworks, and SunSoft’s SPARCompilers and SPARCworks tools,
NEOworks enables developers to rapidly design, implement, test, and deploy
shared services and complete networked applications.

Tools for Building Graphical Applications

SunSoft’s NEOworks OpenStep development tools leverage the industry-
leading NEXTSTEP object development environment. As part of NEOworks,
they deliver a competitive edge to enterprises relying on custom software
applications. Familiar tools such as Interface Builder, Project Builder, Header
Viewer, and Icon Builder facilitate the prototyping and deployment of
graphical front-end applications with less effort and at lower cost.

NEOworks

SPARCworks

SPARCompilers



NEO Product Family Overview — January 1996 17

2

SPARCworks and SPARCompilers

WorkShop NEO also includes advanced SPARCworks developer productivity
tools and SPARCompilers. This includes tools for C, C++ and Objective C
programming, tools for multithreaded programming, and tools to support
team development.

MS-Windows Connectivity

Today’s enterprise environment includes MS-Windows desktops, mainframes
with legacy databases, as well as workgroup LANs. A successful software
environment must provide access to, and seamlessly integration of these
technologies into a coherent conduit for information exchange. SunSoft’s own
experience in deploying heterogeneous environments has provided us with the
needed vision to begin forging the standards and relationships with key
technology leaders to ensure this transparent connectivity.

Complementary technology from IONA Technologies, in combination with
Solaris NEO, provides connectivity with MS-Windows desktops including
interoperability with OLE and the underlying Component Object Model
(COM). This technology, based on IONA’s Orbix™ product, allows
MS-Windows applications to access NEO objects and shared services and act as
networked enterprise application front-ends. Network communication is based
on OMG’s CORBA 2.0 Interoperability specifications (see Figure 8).

Figure 8 Solaris NEO cross-platform connectivity

NEO Network ORBOrbix

MS-Windows
Connectivity

ORB-to-ORB
Connectivity

Any
Solaris NEO Cross-Platform Connectivity

CORBA 2.0
Interoperable

ORB



18 WorkShop NEO Development Environment — January 1996

2

Database Connectivity

A wide range of options are available in NEO to meet data storage, and
database access and integration needs. The built-in Solaris NEO persistence
support, based on technology licensed from Object Design, Inc., provides a
mechanism for applications with simple object data storage requirements. For
more complex needs, application developers can employ existing Relational
Database Management Systems (RDBMS), or Object Oriented Database
Management Systems (OODBMS).

Complementary technology from Persistence™ Software, Inc., in combination
with Solaris NEO, provides mechanisms for automatically mapping objects to
relational tables, ensuring data integrity by enforcing object constraints and
controlling relational transactions, as well as scaling to multiprocessor and
multiple database implementations.

As a founder of the Object Database Management Group (ODMG), SunSoft is
promoting standards for interoperability between OODBMS providers. The
ODMG-93 specification defines interfaces to object databases that ensure
heterogeneous interoperability, object portability and reuse, as well as
concurrent access.



19

NEOworks — Tools for
Constructing Networked Objects 3

WorkShop NEO provides an innovative, comprehensive, integrated set of tools
called NEOworks for developing networked applications. These tools fit into
two general categories: tools for constructing networked objects and tools for
building graphical applications (described in the next chapter). Coupled with
SunSoft’s advanced SPARCompilers and SPARCworks development tools,
developers can rapidly design, implement, test, and deploy powerful
networked applications and shared services.

NEOworks tools for constructing objects include the Networked Object
Constructor, the OMG-compliant Interface Definition Language (IDL)
Compiler, the Networked Object Debugger, and the NEO Services
Development Framework.

Networked Object Constructor

The NEOworks Networked Object Constructor is central to networked object
and shared service development in WorkShop NEO. It effectively frees the
developer from tedious implementation details, allowing them to focus on the
actual semantics of the application. The Networked Object Constructor is one
of the main factors in achieving the large scale programmer productivity
improvements that can be realized using the WorkShop NEO development
environment.



20 WorkShop NEO Development Environment — January 1996

3

Simplified Development

The Networked Object Constructor simplifies the development of networked
applications composed of networked objects. It automates the creation of object
implementations, in particular those required for providing shared services. In
doing so, it manages the networking complexity of the shared service
computing model. Networked objects and shared services developed using the
Networked Object Constructor take full advantage of the common NEO
Services Runtime System, making many runtime support functions completely
transparent.

With the Networked Object Constructor, an application or shared service can
be written as if for a non-networked, unshared environment. The developer
need only supply object method behavior. No additional work is then required
to make the code work in a networked, shared environment. The Networked
Object Constructor also simplifies the development of services that are not

networked (i.e., those intended to be used locally to a computer) where object
interfaces are still expressed in IDL to allow programming language
independence.

Advanced Features

Advanced features of the Networked Object Constructor include:

• Automated housekeeping code. Most of the housekeeping code necessary in a
robust networked object environment is automated. By generating
implementations of standard protocols supported at runtime by the NEO
Services Runtime System, the Networked Object Constructor simplifies the
installation, administration and debugging of objects. The approach focuses
on supporting C++ implementations that use the NEO Network ORB Basic
Object Adapter (BOA) and (optional) transparent persistence.

• Satisfies shared service requirements. Shared services require the handling of
multiple concurrent clients, server and persistent object availability
(activation and state persistence), multithreading (required for sharing and
scalability), and application component management (e.g., installation and
upgrade). These are fully handled by the Networked Object Constructor and
NEO Services.

• Standardized protocols for common operation and reduced complexity.
Implementations of standardized protocols are automatically generated and
thus every server program supports these protocols. Standardization means



NEOworks — Tools for Constructing Networked Objects — January 1996 21

3

that networked objects and shared services can be debugged, installed,
administered and managed together through a common set of APIs and
Solstice NEO tools. In this way, the NEO Services Runtime System forms an
intelligent layer between the application code and the BOA that insulates the
application from networking complexity through a combination of
transparent functions and APIs to support specific protocols.

• Rapid iterative development of interfaces and implementations. Deployment and
development versions can coexist on the same computer, and a developer
can use both. Support is also provided for the graceful evolution of
deployed interfaces and implementations. Developers can create and test
new interfaces and implementations without impacting deployed objects.

Specific Areas of Support

The Network Object Constructor provides specific automated support in the
following areas:

• NEO BOA support. Coupled with the NEO Server and Persistent Object
Availability capabilities, this includes support for the creation of BOA-based
objects, transparent activation and destruction of objects, and automatic
object deactivation and server shutdown.

• Installation support. SVR4 installation packages are automatically generated.
These can be NFS-mountable packages installed on a server computer, and
mounted and enabled on client computers. Upgradable application
packages can also be built.

• Management and debugging support. Built-in server management support is
provided through the NEO Server Management capability. Also provided is
support for distributed debugging, request tracing, and exception logging.

• C++ programming support. This includes basic support for atomic operations
(locking/commit), support for C++ inheritance in servant classes, and
support for object reuse through en-masse and per-operation delegation.
This allows the flexible binary reuse of object implementations

• Optional persistent data support. Transparent persistence of object state is
provided using the NEO Data Store Manager. Full hooks are also provided
to allow custom persistence schemes.

• Shared service support. Code generated by the Networked Object Constructor
conforms with the NEO Workgroup Support name space organization and
policy for registering and finding shared services.



22 WorkShop NEO Development Environment — January 1996

3

Object Server Language

The Object Server Language (OSL) is used to define object implementation and
server process and program characteristics. The language addresses such areas
as concurrency control and locking policies, object creation operations, object
installation details, and (optional) persistent data management.

A separate Data Definition Language (described below) allows the developer
to define the persistent data that is to be transparently read and written by the
NEO Data Store Manager.

Data Definition Language

The Data Definition Language (DDL), whose syntax is a subset of OMG IDL, is
used to define data to be made persistent. DDL provides a standardized way of
describing the persistent state of an object in an architecture and programming
language-independent fashion. State is defined as data objects that only have
attributes. Data object interfaces are grouped into schemas. DDL supports the
complete range of IDL data types with the exception of Any.

OSL Compiler

The Object Server Language Compiler (OSL Compiler) generates classes that
inherit or use the NEO Services Development Framework and, at runtime,
work with the NEO Services Runtime System. These classes address the
following areas:

• Installation (e.g., registration with the BOA and hooks for reconfiguration)

• Object creation and initialization functions (including default initialization for
servant objects and persistent state)

• Server and object activation and deactivation functions (to be invoked by the
BOA)

• Transparent persistence of object state

• Server process startup, timeout, and shutdown

• Locking policy

• Tracing and logging of status information (controlled and recorded in a
centralized fashion)

• Subobject support



NEOworks — Tools for Constructing Networked Objects — January 1996 23

3

• Administration and installation support

The OSL Compiler also generates sample code to which application-specific
code can be added. This includes C++ servant classes that implement the
object’s operations in terms of C++ member functions. The optional automatic
filemerge of newly generated code with existing customized source code files
is supported.

DDL Compiler

The DDL Compiler reads the data description for an object expressed in DDL
and produces all of the code necessary to read and write the object's state using
the NEO Data Store Manager. The compiler also produces the header files
necessary for accessing the data, for use in the object implementation source
code.

Object Server Maker

The Object Server Maker generates (UNIX make) makefiles — based on an
Imakefile definition — that control the development process.

NEO Services Development Framework

In general the NEO Services Development Framework is not used directly by
developers, but rather provides supporting APIs and code for the Networked
Object Constructor tools. The NEO Services Runtime System, consisting of
shared libraries, provides the necessary runtime support for code generated by
the Network Object Constructor and for calls made directly from the object
implementation.

The NEO Services Development Framework is described in more detail in the
following sections.

IDL Compiler

The OMG IDL-compliant NEOworks IDL Compiler provides a single front end
and multiple back ends supporting C and C++ language mappings and the
loading of information into the NEO Interface Repository. At development



24 WorkShop NEO Development Environment — January 1996

3

time, the IDL Compiler generates client stubs and server skeletons, and
associated header and other files. It also generates typecodes for the typecode
interpreter, and interface and logical IDs for use in stubs.

The NEOworks IDL Compiler provides additional, extended support for data
types including 64-bit ints, long dbls, wchars, wstrings and interface
versioning.

Networked Object Debugger

The NEOworks Networked Object Debugger provides the full capabilities of
the standard SPARCworks MT debugger. It handles multiple processes,
servers, and thread contexts, and the state of running server processes can be
examined and multiple threads inspected and debugged. The debugger can
graphically manipulate several server process from a single GUI.

In addition, the Networked Object Debugger adds the ability to follow an
operation invocation on a networked object, stepping from a client to an object
running in a remote server process and back again. This essentially provides
distributed program stepping in which a single step may cross process and
machine boundaries.

NEO Services Development Framework

NEO Services are a comprehensive development framework and associated
shared libraries for networked objects and shared services. The development
framework is employed by the NEOworks Networked Object Constructor. The
shared libraries make up the NEO Services Runtime System in Solaris NEO.

Unique to NEO, NEO Services are fully compatible with CORBA and enable
full, simplified use of the NEO networked object infrastructure. NEO Services
automate and make transparent functions that an application developer would
normally need to write in the areas of:

• Workgroup Support

• Shared Service Finder

• Server Availability

• Persistent Object Availability

• Data Store Manager

• Concurrent Requests



NEOworks — Tools for Constructing Networked Objects — January 1996 25

3

• Implementation Support

• Server Management

• Application Installation

Table 1 summarizes the functions of NEO Services.

Table 1: NEO Services functions

Workgroup Support

The NEO Workgroup Support establishes and implements standardized
workgroup and computer resource naming policies. The workgroup is the unit
for administration, management, and sharing in NEO. A workgroup is a
collection of computers that can include workstations and server machines.
Each user may select which of their own resources may be shared by the

Function Description

Workgroup Support Establishes and implements standardized

workgroup/computer naming policies, and allows access to

shared services

Shared Service Finder Registers and finds services based on NEO Naming Service,

and enables relocation of services without changing or

recompiling client code

Server Availability Simplifies server activation, provides transparent

management of object implementations grouped in a server

program, and handles housekeeping functions

Persistent Object Availability Provides transparent management of persistent objects,

manages application-independent ORB-related

housekeeping, automates support for life-cycle create and

destroy and object instance and implementation activation

Data Store Manager Provides transparent persistence for object state

Concurrent Requests Provides transparent management of concurrent requests to

multithreaded object implementations, and supports multiple

locking policies

Implementation Support Provides functions that simplify and make easier

development of object implementations

Server Management Provides server and application management functions and

transparent support for management objects installed as part

of applications

Application Installation Provides transparent support for application installation



26 WorkShop NEO Development Environment — January 1996

3

workgroup, and which workgroup services are to be used instead of local
resources. A user can have a private part of the workgroup resources reserved
for their development or other purposes.

Workgroup Support allows access to shared services by enabling services to be
registered in a well known place and found using the NEO Shared Service
Finder. In this way, the need for applications to have a detailed knowledge of
the system name space is eliminated.

Shared Service Finder

The NEO Shared Service Finder employs a federated approach to registering
and finding services based on the NEO Naming Service. Building on the
Workgroup Support resource naming policies, it uses a federation of
predefined and application-specific naming contexts.

Services (i.e., named objects) are registered at install time or runtime in a well
known place. Applications can then dynamically find a service that is available
to run in an appropriate server process. A service can be local to a computer or
shared by a workgroup. A mode can be selected that controls whether a
deployed service or a version under development is found.

The Shared Service Finder enables the relocation of services without needing to
modify or recompile client code. In this way, service requests can be
distributed to the most appropriate resource in a workgroup and dynamic load
balancing is facilitated.

Server Availability

The NEO Server Availability builds on and simplifies NEO Network ORB
server process activation. It provides the transparent management of the
availability of object implementations grouped in a server program and takes
care of application-independent ORB-related housekeeping functions that the
server program developer would otherwise need to provide. With NEO
Services, server program developers need only write minimal application-
specific “server availability” code if needed.

Server Availability automates server process startup on arrival of a request for
any object in a server program as well as server process shutdown after a
period of inactivity. The timeout (i.e., maximum idle period) is configurable



NEOworks — Tools for Constructing Networked Objects — January 1996 27

3

per server process. The process waits for all objects in the server process to be
deactivated before shutdown occurs. The wait interval and shutdown retry
cycle time are configurable.

Because server availability is handled in a standardized way, the system can
automatically manage and recover resources such as memory. In conjunction
with the NEO Persistent Object Availability, the use of system resources is
minimized.

Persistent Object Availability

The NEO Persistent Object Availability builds on and simplifies NEO Network
ORB object activation. It provides transparent server-side management of the
availability of persistent objects and takes care of application-independent
ORB-related housekeeping functions that the object developer would
otherwise need to provide. With NEO Services, object developers need only
write minimal application-specific “persistent object availability” code if
needed.

Persistent Object Availability automates support for object life-cycle create and
destroy, and object instance and implementation activation. It automates the
activation of the object implementation and instance on the arrival of a request.
A servant C++ object implementing the operations of the object’s interface,
transient data, and other functions is automatically instantiated when an object
is activated, and destroyed when the object is deactivated.

Persistent Object Availability also automates the deactivation of objects after a
configurable period of inactivity. The timeout (i.e., maximum idle period) is
configurable per object implementation. It transparently handles thread
quiescing and waits for all pending operations to complete using a
configurable wait and retry cycle time.

Optional transparent persistence of an object’s state is provided based on the
NEO Data Store Manager. This includes automatic atomic update at timed
intervals and before deactivation of the object. The time interval is configurable
per implementation. In addition, an infrastructure is provided to support
custom persistence. All the hooks necessary to incorporate custom persistence
mechanisms are provided to address cases where more control is needed over
performance and the handling of data formats and legacy data.



28 WorkShop NEO Development Environment — January 1996

3

Data Store Manager

Used in conjunction with Persistent Object Availability, the NEO Data Store
Manager provides transparent persistence for the state of an object. It supports
the model that allows networked objects to be implemented by code organized
as servant objects.

Based on technology provided by Object Design, Inc., the Data Store Manager
is designed to efficiently support development models in which applications
are composed of many fine-grain objects comparable in size and complexity to
typical C++ objects. Data objects can contain pointers to other data objects,
allowing users to create persistent representations of complex, linked data
structures in a natural manner.

A subset of IDL, called the Data Definition Language (DDL), is used to define
the persistent state in terms of “data objects”. The IDL language binding
approach is used to provide client bindings for a wide range of architectures
and programming languages. Stored data maintains the same level of type
safety as that provided by IDL.

Applications can create “data stores” (the unit of storage) in any part of the file
system to which they have access. Transparent to clients, data objects are
cached in local memory. Access to individual attribute values is essentially at
the speed of native programming language calls. Modifying the persistent state
of an object is done by simply modifying the C++ state of the object in memory
— the rest is automatic and transparent.

Concurrent access to clusters within a data store is supported, making it
ideally suited for supporting NEO multithreaded server programs. Automatic
atomic updates provide a two-phase commit protocol, in anticipation of
distributed transactions involving multiple services. Either all the changes
made within an update are recorded, or none of the changes are recorded. A
server process can be atomically updating several clusters with different
schema definitions concurrently.

Based on the OMG CORBAservices Persistent Object Service specification, the
Data Store Manager is a upwards-compatible subset of the object database
specification developed by the Object Database Management Group (ODMG).
An object implementation can therefore be easily upgraded as application
requirements evolve.



NEOworks — Tools for Constructing Networked Objects — January 1996 29

3

Concurrent Requests

The NEO Network ORB spawns a new thread for each incoming request to a
server process. NEO Concurrent Requests provides transparent management of
concurrent requests to multithreaded object implementations, ensuring the
integrity of shared data. This frees developers from the implementation details
of multithreaded programming, allowing them to focus on the application,
while gaining the significant performance advantages and scalability of Solaris’
advanced multithreading technology.

Three different locking policies are supported: mutex (default), reader-writer,
and fine grain. The locking policy is selectable on a per object implementation
basis. Scoped locks are supported: with mutex and reader-writer locking, locks
are automatically released when out of scope of the locking variable, or when
the variable is destroyed.

• Mutex Locking

Only one request at a time is allowed for each object (i.e., only one method
in the object implementation is active at any time): a single thread gains
exclusive access to an object’s persistent state. Other objects (instances as
well as implementations) in a server process can be servicing requests
simultaneously.

• Reader-writer Locking

Operations that only read shared data (persistent and transient) are
distinguished from those that (potentially) may write or change data. Each
operation in an object’s interface is defined as either reader or writer. This
locking policy enables multiple concurrent reader operations but writer
operations gain exclusive use.

• “Fine grain” Locking

Higher level locking can be turned off and developers can implement
custom fine grain locking policies. Shared data can be protected at the
thread mutex level within a method.

Implementation Support

The NEO Implementation Support provides functions that simplify and make
easier the development of object implementations. This includes:

• Servant Support: constructor, destructors, locking, and deactivation



30 WorkShop NEO Development Environment — January 1996

3

• Smart Object References: automatic memory deallocation for smart object
references when they go out of scope or upon assignment

• Reference Data Manipulation: simplified manipulation and management of
reference data associated with object references

• Exception Handling and Message Text: including an internationalized message
text catalog, extensible by developers

• Object Tracing: standardized, automated way of tracing and logging;
controlled on a per-server process basis

• Message Logging: predefined logging macros (in addition to trace messages)
and runtime configurable control of message source, message destination,
and output format on a per-server process basis

• Utility Support: ease-of-use support for custom persistence, subobjects, and
other NEO Network and NEO Services features

Server Management

Individual custom applications can readily capitalize on the advanced built-in
administration and management capabilities of Solaris NEO. The NEO Server
Management provides server and application management functions and
transparent support for management objects that are installed as part of an
application. Management objects are automatically generated by the
NEOworks Networked Object Constructor and incorporated into the server
program along with application objects.

Server Management completely takes care of server management and
application management functions that a server program developer would
otherwise need to provide. It enables the status of computers, server processes,
and objects to be interactively monitored, administered, and managed by
Solstice NEO tools.

With NEO Services, server processes can be activated and shutdown manually,
the current status of a server process can be queried, object tracing and
message logging can be turned on or off, and the persistent state (transparent
and custom persistence) of objects in the server process can be backed-up and
restored without any programming by the application developer.



NEOworks — Tools for Constructing Networked Objects — January 1996 31

3

Application Installation

NEO Application Installation provides transparent support for the application
installation process. Application installation code is automatically generated by
the NEOworks Networked Object Constructor and accessed and controlled by
Solstice NEO tools. Application Installation completely takes care of
installation functions that the application developer would otherwise need to
provide.

Installation steps that are automated include the registration of server
programs with the NEO Network ORB, the installation of IDL information
associated with server programs in the NEO Interface Repository, and the
registration of shared services for access via the NEO Shared Service Finder.

The NEO Application Installation builds on the easy-to-use SVR4 packaging
concept, providing a familiar and reliable method for installing and
deinstalling software packages. Applications and objects are installed and their
availability automatically registered, allowing seamless upgrading with
minimal impact on users.



32 WorkShop NEO Development Environment — January 1996

3



33

NEOworks — Tools for Building
Graphical Applications 4

NEO’s support of OpenStep provides functionality and interoperability which
leverages the industry-leading NEXTSTEP development environment. The
powerful set of OpenStep development tools included in WorkShop NEO,
provides a development platform that delivers a competitive edge to
enterprises that rely on custom software applications. Familiar tools such as
Interface Builder, Project Builder, and Icon Builder are supplied to facilitate the
development of reusable objects, as well as the rapid prototyping and
deployment of customized networked applications that include GUI front-ends
to shared services.

OpenStep

The OpenStep component of NEO consists of OpenStep-compliant
development frameworks and shared runtime libraries. The OpenStep
frameworks, supplied as Objective C class libraries, comprise a Graphical User
Interface (GUI) Framework, Application Framework, Foundation Framework,
and Enabling Framework.

OpenStep frameworks provide powerful reusable application building blocks
that can be used by developers in conjunction with the NEOworks Graphical
Application Builder. The frameworks are extensible by subclassing or
delegation (via hooks to dynamically add new components) and feature the
following capabilities:

• Rich data-type support including images and multi-attributed text suitable
for supporting multimedia documents



34 WorkShop NEO Development Environment — January 1996

4

• Same imaging model for screen and hardcopy (via DPS)

• Common fonts and printing management

• Consistent user help model

• Abstractions for cross-platform program portability

• Support for Sun “Level 3” internationalization for end-user, developer and
administrator

The AppKit class library, SunSoft’s implementation of the OpenStep GUI and
Application Frameworks, is based on the X11 Display PostScript (DPS)
capability supplied as part of Solaris. AppKit provides a rich set of standard
objects useful for all applications, with a wide variety of customization
options. Included is a complete set of user interface objects and controls, as
well as objects that support data sharing and inter-application communication.

AppKit is similar in overall function to the CDE-Motif toolkit. It incorporates
DPS rendering within top level X Windows and supports Alpha compositing.
It provides extremely sophisticated shading and transparency effects beyond
the simple 3D shading provided by most X Windows toolkits. Other extended
features include support for lower level data types available in the OpenStep
Foundation Framework (implemented as the FoundationKit class library).

Graphical Application Builder

The NEOworks OpenStep Graphical Application Builder component of
WorkShop NEO includes:

• Project Builder

• Interface Builder

• Header Viewer

• Icon Builder

• OpenStep Frameworks

Project Builder

The NEOworks Project Builder is a graphical tool for building, debugging and
maintaining OpenStep applications (see Figure 9). It manages all files and
resources associated with an application. A project (corresponding to an
application or shared library) is a collection of source code files, make files,



NEOworks — Tools for Building Graphical Applications — January 1996 35

4

localization files, icon and image files (TIFF or EPS format) and persistent
object files. Persistent object files are output from the Interface Builder and
define GUI objects that are dynamically created at runtime.

Figure 9 Project Builder

Project Builder is a complete development environment in which the developer
can define new projects, start the Interface Builder and edit, compile, link, run
and debug generated code. It supports multiple subprojects and the ability to
search for strings in source code. Project Builder and InterfaceBuilder work
together so that most developers never have to write makefiles and rarely need
to directly use the OpenStep AppKit Objective C classes. Project Builder also
automates the linking in of code for CORBA networked objects.

Project Builder has an easy-to-use point and click interface, reducing the
ramp-up time for new developers, and forms a valuable asset to the
development team as a repository for project-wide information and resources.

Interface Builder

The NEOworks Interface Builder provides a complete user interface
development environment that greatly improves developer productivity,
allowing the developer to focus on the application, and not on the interface



36 WorkShop NEO Development Environment — January 1996

4

implementation details (see Figure 10). Because user interface changes are fast
and simple, rapid prototyping is encouraged allowing multiple iterations to
obtain the very best interface possible. This approach to enhancing the design
cycle with feedback helps to significantly improve usability and the quality of
human-software interaction. The ability to define and refine the interactions
between objects through an object editor, makes testing and refining
applications a quick and painless process.

A consistent user interface for both general-purpose and custom applications
provides standard panels for common functions such as file opening, saving,
and printing, thus reducing the time required for a user to become productive
with a new application. A single Display PostScript model for viewing and
printing enhances the end user experience as well as the development cycle.

Figure 10 Interface Builder



NEOworks — Tools for Building Graphical Applications — January 1996 37

4

Applications may gain consistent, advanced features and functionality with
little developer effort by building on an extensive library of objects that
provide the common functions required by applications. Hooks for adding
customized help for an application enable the developer to take advantage of a
well organized, easy to use, consistent help facility with hyperlink capabilities.

The NEOworks Interface Builder is a graphical tool for OpenStep GUI
generation and object editing. It allows the developer to graphically design the
relationship between objects in an application. Interface Builder includes a user
interface layout tool and facilities for subclassing existing objects. Unlike most
X Windows GUI generators, developers never have to look at the underlying
generated OpenStep code.

Key features of the Interface Builder include:

• Icon-based palette panel for interface composition. The palette panel contains
icons of user interface objects (e.g., menu items, new top level windows,
controls, browser and text objects) that can be deposited onto the main
window or main menu to compose the user interface.

• Palettes for built-in, third-party, and custom objects. In addition to providing
graphical palettes for built-in objects, third party and custom palettes can be
loaded. New palettes can be defined by the user and dynamically loaded
into the palette panel.

• File panel for managing file objects. This includes making additions to the four
standard types of file objects: images, sounds, classes and objects. New
classes can be defined using the classes subpanel. Interface Builder
automatically generates appropriate header files and methods stubs.

• Extensive tools submenu. The tools submenu includes an object inspector to
set properties for objects. Properties include connections between user
interface objects and custom application-specific objects. An example of this
is connecting a button to code that increments a counter.

Header Viewer

The NEOworks Header Viewer is a class browser for navigating class
hierarchies. It provides access to class information and documentation, and
displays classes, methods, protocols, and other language constructs. Selecting a
particular construct causes the associated documentation or header file to be
displayed.



38 WorkShop NEO Development Environment — January 1996

4

Header Viewer handles Objective C library headers, making it very useful for
working with AppKit and FoundationKit headers.

Icon Builder

The NEOworks Icon Builder is a simple, general purpose, editing tool for
creating TIFF files. In common with most graphical editing tools, Icon Builder
supports simple graphical painting, geometric figures (e.g., line, circle, oval,
and rectangle), area fill, and text. Icon Builder can also be used to pixel-edit
icons for use on the NEO Desktop.

In addition, Icon Builder supports the creation of color transparency and
shading effects using a color panel. It also supports TIFF files containing
multiple bit depths (i.e., bits per pixel).

OpenStep Frameworks

Used in conjunction with the Graphical Application Builder tools and with the
SPARCompiler Objective C++, the OpenStep frameworks comprise the
following:

• OpenStep GUI Framework

• OpenStep Application Framework

• OpenStep Foundation Framework

• OpenStep Enabling Framework

These frameworks are described in the following sections.

OpenStep GUI Framework

The OpenStep GUI Framework provides reusable, customizable objects for
building and using windows, panels, structural views, control views, images,
colors, text, and fonts. Table 2 lists the GUI Framework objects and their
classes.



NEOworks — Tools for Building Graphical Applications — January 1996 39

4

Table 2: OpenStep GUI Framework objects and their classes

OpenStep Application Framework

The OpenStep Application Framework provides reusable, customizable objects
for managing and manipulating workspaces, forms, help, filing, printing,
spelling, data exchange (for cut and paste, and drag and drop), and data links
(hyperlinks). Predefined window panels for incorporation in applications are
provided for help (enabling consistent, context-sensitive, hypertext linked, on-
line help), opening and saving files, printing documents, creating and
navigating hyperlinks, and for checking spelling and building user
dictionaries. Table 3 lists the Application Framework objects and their classes.

Table 3: OpenStep Application Framework objects and their classes

Objects Classes

Window Window, Screen, Event

Panel Panel, Menu, ActionCell, MenuCell, PopUpList,

Structural View View, Box, SplitView, ScrollView, ClipView

Control View Control, Cell, BrowserCell, Browser, Button, PopUpButton,

ButtonCell, Slider, SliderCell, Scroller

Image Image, ImageRep, BitmapImageRep, EPSImageRep,

CustomImageRep, CachedImageRep, Cursor

Color Color, ColorList, ColorPicker, ColorPanel, ColorWell

Text Text, CStringtext, TextField, TextFieldCell

Font Font, FontManager, FontPanel

Objects Classes

Workspace Workspace

Form Matrix, Form, FormCell

Help HelpPanel

File SavePanel, OpenPanel

Print PrintInfo, PrintOperation, Printer, PrintPanel, PageLayout

Spell SpellChecker, SpellServer, SpellPanel

Data Exchange Pasteboard

Data Link (Hyperlink) DataLink, DataLink Manager, DataLink Panel, Selection



40 WorkShop NEO Development Environment — January 1996

4

OpenStep Foundation Framework

The OpenStep Foundation Framework provides reusable, customizable objects
that support basic program functions. This includes operation processing,
creating and accessing basic structured and stored data, thread control, and
obtaining information about the program runtime environment. Table 4 lists
the Foundation Framework objects and their classes.

Table 4: OpenStep Foundation Framework objects and their classes

OpenStep Enabling Framework

The OpenStep Enabling Framework provides reusable, customizable objects
that enable the integration of networked objects.

 Objects Classes

Operation Processing Object, Invocation, MethodSignature, Exception,

AssertionHandler

RunLoop

Notification, NotificationCenter, NotificationQueue

Proxy, DistantObject

Structured Data Array, MutableArray, Number, Value, Enumerator

String, Scanner, MutableString

Set, MutableSet, CountedSet

Data, MutableData, Serializer, Deserializer

CharacterSet, MutableCharacterSet

Stored Data BTreeBlock, BTreeCursor

ByteStore, ByteStoreFile

Dictionary, MutableDictionary

Coder, Archiver, Unarchive

Date, CalandarDate

TimeZone, TimeZoneDetail

Thread Control Thread, Lock, Connection, RecursiveLock,

ConditionLock

Program Environment ProcessInfo, Timer, UserDefaults, Bundle,

AutoReleasePool



NEOworks — Tools for Building Graphical Applications — January 1996 41

4

Callback Facility

The Callback Facility supports the ability for OpenStep-based Objective C
programs to call networked objects and properly handle the return results
through the use of callback objects. A callback object is a limited form of
networked object.

AppKit Synchronizer

NEO application code can be multithreaded, but most libraries are not
MT-safe, including the AppKit. Only a single thread in a process may safely
access the AppKit at any one time. On its own, AppKit cannot properly handle
multiple threads arising from separate NEO Network ORB requests from the
same process. The AppKit Synchronizer can be used by applications to
serialize the request processing. This is sufficient for simple updates.



42 WorkShop NEO Development Environment — January 1996

4



43

SPARCworks and SPARCompilers 5

SPARCompilers

Objective C++

The SPARCompiler Objective C++ included with WorkShop NEO provides full
support for Objective C using an extended native ANSI C++-compliant
compiler. Objective C++ is not a new programming language — the compiler
provides support for both Objective C and C++.

Key features of SPARCompiler Objective C++ include:

• Objective C and C++ binaries can be mixed in the same process.

• Objective C and C++ source code can be intermixed in the same program. Some
minor restrictions exist, such as nesting C++ classes in Objective C classes
and vice versa. C++ and Objective C class hierarchies also cannot be mixed.

• Seamless debugging of Objective C and C++ programs. NEOworks and
SPARCworks debuggers are language sensitive and can understand both
Objective C and C++. Breakpoints may be set within Objective C methods
and on Objective C method invocations. Stepping through a method
invocation is possible without stepping into the method’s lookup runtime.
Class and instance methods may be invoked interactively. The contents and
superclass instance variables of an Objective C object can also be printed.



44 WorkShop NEO Development Environment — January 1996

5

• SPARCworks tools understand both Objective C and C++ source, headers, etc. For
example, the SPARCworks SourceBrowser can answer queries containing
Objective C syntax. The SourceBrowser can also generate a class graph of
Objective C classes.

• Integration of OpenStep and networked object programming. Objective C
programs can directly invoke operations on networked objects using C++
calls (using the IDL C++ mapping). C and C++ code can call selected
OpenStep Objective C objects residing in the same process via IDL-style
stubs. In addition, Objective C code can be made network accessible by
wrapping it in C++ code that supports an IDL interface.

C and C++

WorkShop NEO includes the SPARCompiler C, providing K&R and ANSI
compliant C (ANSI CX3.159-1989). As part of the SPARCompiler Objective
C++, a full ANSI C++-compliant compiler is provided.

SPARCworks Developer Productivity Tools

SPARCworks developer productivity tools are an integrated set of
development tools providing support for the development, deployment, and
evolution of applications. The tools are engineered to improve individual
developer productivity as well as facilitate improved application performance
and quality.

Tools for C, C++, and Objective C Programming

SourceBrowser

A powerful Source Browser facilitates examination and modification of source
code. A flexible search facility can filter based on definition, use, and type of
symbols. CallGrapher displays C++ class inheritance hierarchies to help
visualize relationships between object classes, while ClassBrowser helps
navigate through classes, displaying data and function members.



SPARCworks and SPARCompilers — January 1996 45

5

PerformanceAnalyzer

PerformanceAnalyzer provides a wealth of graphical and textual information
that helps in the tuning of applications for maximum performance.
Information concerning processing time, memory usage, and system utilization
is provided. A unique code ordering capability can increase performance by
organizing the program to minimize runtime page faults.

FileMerge

Software development teams must often work on the same parts of code
simultaneously and FileMerge is essential for successfully comparing and
combining source code changes. Both versions of code are shown side-by-side,
and the differences are graphically highlighted. Changes can be made
automatically or manually to combine the two sources into a common, merged,
file.

MakeTool

MakeTool automates the UNIX make facility and provides a graphical user
interface, reducing errors and development time.

SPARCworks Manager

SPARCworks manager provides a common focal point for the SPARCworks
toolset, launching and managing tools through a single graphical interface.

SPARCworks/iMPact

SPARCworks/iMPact tools are designed to get the most of multithreaded and
multiprocessing applications.



46 WorkShop NEO Development Environment — January 1996

5

Tools for Multithreaded Programming

MT Debugger

The MT Debugger supports dynamic access and control of threaded programs.
ThreadInspector graphically views an applications threads at runtime. The
debugger can seamlessly traverse system boundaries, since client and server
objects may reside on different systems. A powerful ‘fix and continue’
capability saves valuable time in the debug stage of development by
eliminating the linking phase in the edit-compile-link-test loop.

LockLint

LockLint statically analyzes code for the most common MT synchronization
problems, deadlocks and data races.

ThreadAnalyzer

ThreadAnalyzer collects and graphs profiling information at the thread level,
showing system resource usage and the thread metrics such as time waiting for
locks.

SPARCworks/TeamWare

SPARCworks/TeamWare allows the software development team to visually
coordinate their efforts for maximum productivity and effectiveness.
SPARCworks/TeamWare frees a development effort from geographical bounds
by coordinating their efforts on the network, and allows human resources to be
placed where they are needed most (see Figure 11).



SPARCworks and SPARCompilers — January 1996 47

5

Figure 11 SPARCworks/TeamWare

Tools to Support Team Development

SPARCworks/TeamWare provides capabilities for visually tracking,
integrating, and managing multiple version and architecture projects including
tools to coordinate simultaneous code updates into a common, integrated
version. Visual tools allow developers to graphically navigate workspaces and
provides for drag and drop manipulation of individual files as well as entire
source code trees. Besides organizational and intuitive gains in productivity,
SPARCworks/TeamWare provides capabilities that take advantage of Sun’s
advanced multiprocessor technology and benefit from the biggest savings in
development costs — the developer’s precious time and energy.
SPARCworks/TeamWare tools include the CodeManager, VersionTool,
FreezePoint, and ParallelMake.



48 WorkShop NEO Development Environment — January 1996

5

CodeManager

Developing applications for multiple hardware architectures and software
environments, as well as multiple versions that must be maintained over time
is a challenge to development teams. CodeManager provides a rich visual
environment to monitor and control these issues effectively and easily,
conveying information quickly and accurately, as well as speeding the software
development and maintenance efforts.

VersionTool

Teams often need to work on multiple releases of a software product
simultaneously. A new version may be quickly populated and begin its own
existence by starting with a current version, and progressing from it
independently. Browsing allows viewing and comparing of previous versions
with intuitive operations.

FreezePoint

The ability to build a previous release from history aids in maintaining
previous versions without interfering with the current version. FreezePoint
allows the re-creation of previous versions, creates bill of materials for a given
workspace, and tracks files even if they have been renamed.

ParallelMake

Taking advantage of SunSoft’s advanced multiprocessing capabilities,
ParallelMake builds software faster because it can utilize multiple processors
to work in parallel to compile and link programs. ParallelMake is compatible
with make and MakeTool, and is customizable, specifying the maximum
number of parallel jobs, and other loading parameters.



49

References

The Common Object Request Broker: Architecture and Specification, Object
Management Group, 1994.

NEO Programming Guide, SunSoft, Inc., May 1995.

NEO Systems Management Guide, SunSoft, Inc., May 1995.

NEO Tutorial, SunSoft, Inc., May 1995.

NEO System Installation, SunSoft, Inc., May 1995.

NEO Programming Interfaces Reference, SunSoft, Inc., May 1995.

Solaris NEO Operating Environment, Product Overview, SunSoft, Inc., January
1996.

Sunsoft’s NEO Product Family, Product Overview, SunSoft, Inc., January 1996.

Solaris OpenWindows: OpenWindows V3 Collection: Release Reports and White
Papers, Part Number 91021-0, SunSoft Inc.

Solaris SunOS 5.0: SunOS 5.0 Multithreading and Real-Time, Part Number 91025-
0, SunSoft Inc.

Solaris ONC: Design and Implementation of Transport-Independent RPC, Part
Number 91028-0, SunSoft Inc.

Solaris SunOS: SunOS 5.0 Release Report, Part Number 91023-0, SunSoft Inc.

The ToolTalk Service, Part Number 91022-002, SunSoft Inc.



50 WorkShop NEO Development Environment — January 1996

Introduction to the ToolTalk Service, Part Number 91031-002, SunSoft Inc.

The ToolTalk Service: An Inter-Operability Solution, Part Number ISBN 013-
088717-X. SunSoft Press/Prentice Hall, Englewood Cliffs, NJ.

ToolTalk and Open Protocols: Inter-Application Communication, Part Number ISBN
013-031055-7, SunSoft Press/Prentice Hall, Englewood Cliffs, NJ (June 1993).


